Partial Semigroups and Convolution Algebras

نویسندگان

  • Brijesh Dongol
  • Victor B. F. Gomes
  • Ian J. Hayes
  • Georg Struth
چکیده

Partial Semigroups are relevant to the foundations of quantum mechanics and combinatorics as well as to interval and separation logics. Convolution algebras can be understood either as algebras of generalised binary modalities over ternary Kripke frames, in particular over partial semigroups, or as algebras of quantale-valued functions which are equipped with a convolution-style operation of multiplication that is parametrised by a ternary relation. Convolution algebras provide algebraic semantics for various substructural logics, including categorial, relevance and linear logics, for separation logic and for interval logics; they cover quantitative and qualitative applications. These mathematical components for partial semigroups and convolution algebras provide uniform foundations from which models of computation based on relations, program traces or pomsets, and verification components for separation or interval temporal logics can be built with little effort.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abstract structure of partial function $*$-algebras over semi-direct product of locally compact groups

This article presents a unified approach to the abstract notions of partial convolution and involution in $L^p$-function spaces over semi-direct product of locally compact groups. Let $H$ and $K$ be locally compact groups and $tau:Hto Aut(K)$ be a continuous homomorphism.  Let $G_tau=Hltimes_tau K$ be the semi-direct product of $H$ and $K$ with respect to $tau$. We define left and right $tau$-c...

متن کامل

Convolution Algebras: Relational Convolution, Generalised Modalities and Incidence Algebras

Convolution is a ubiquitous operation in mathematics and computing. The Kripke semantics for substructural and interval logics motivates its study for quantalevalued functions relative to ternary relations. The resulting notion of relational convolution leads to generalised binary and unary modal operators for qualitative and quantitative models, and to more conventional variants, when ternary ...

متن کامل

Fourier Algebras on Topological Foundation ∗-semigroups

We introduce the notion of the Fourier and Fouier-Stieltjes algebra of a topological ∗-semigroup and show that these are commutative Banach algebras. For a class of foundation semigroups, we show that these are preduals of von Neumann algebras. 1. Definitions and Notations Let S be a locally compact topological semigroup and M(S) be the Banach algebra of all bounded regular Borel measures μ on ...

متن کامل

Algebras on inverse semigroups with finite factorization: Rukolaine Idempotents

The results in this paper were motivated by the case when the inverse semigroup is the McAlister monoid MX on a set X. In [1] we considered some very large convolution algebras on MX , including some C ∗-algebras. Our main focus in [1] was deciding on the primitivity of the algebras, and one key tool was the use of generalized Rukolaine idempotents. To define these very large convolution algebr...

متن کامل

Weighted Convolution Measure Algebras Characterized by Convolution Algebras

The weighted semigroup algebra Mb (S, w) is studied via its identification with Mb (S) together with a weighted algebra product *w so that (Mb (S, w), *) is isometrically isomorphic to (Mb (S), *w). This identification enables us to study the relation between regularity and amenability of Mb (S, w) and Mb (S), and improve some old results from discrete to general case.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Archive of Formal Proofs

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017